Cluster chemistry

LXXXVI *. Metallation of pyridine in reactions with an Ru_{5} cluster. X-Ray structures of $\mathrm{Ru}_{4}\left\{\mu_{4}-\mathrm{C}_{2} \mathrm{H}\left(\mathrm{PPh}_{2}\right)\right\}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{NC}_{5} \mathrm{H}_{4}\right)(\mathrm{CO})_{10}$. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Ru}_{6}\left(\mu_{6}-\mathrm{C}_{2} \mathrm{H}\right)\left(\mu_{3}-\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{12}$. $1.25 \mathrm{CHCl}_{3}$

Chris J. Adams and Michael I. Bruce
Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, S.A. 5001 (Australia)

Brian W. Skelton and Allan H. White
Department of Chemistry, University of Western Australia, Nedlands, W.A. 6009 (Australia)
(Received July 29, 1992)

Abstract

Reaction of the open Ru_{5} cluster $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{13}$ (1) with pyridine yields $\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{C}_{2} \mathrm{H}\left(\mathrm{PPh}_{2}\right) \mathrm{K}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\right.$ $\left.\mathrm{NC}_{5} \mathrm{H}_{4}\right)(\mathrm{CO})_{10}$ (3) and $\mathrm{Ru}_{6}\left(\mu_{6}-\mathrm{C}_{2} \mathrm{H}\right)\left(\mu_{3}-\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{12}$ (4). The metal core of 4 has an unusual structure, being a nido pentagonal pyramid, although a better representation is based on a metallated pseudo-octahedral $\mathrm{C}_{2} \mathrm{Ru}_{4}$ skeleton. Complex 3 contains a vinylidene $\left[\mathrm{C}=\mathrm{CH}\left(\mathrm{PPh}_{2}\right)\right.$], whereas 4 contains the first example of a μ_{6}-alkynyl ligand ($\mathrm{C}_{2} \mathrm{H}$), formed by a $\mathrm{P}-\mathrm{C}$ bond cleavage in the $\mathrm{C}_{2} \mathrm{PPh}_{2}$ ligand in 1 . Both clusters contain a 2 -metallated pyridine ligand, with the displaced H atom adding to the $\mathrm{C}_{2} \mathrm{PPh}_{2}$ group. The X -ray crystal structures of $\mathbf{3}$ and $\mathbf{4}$ were determined. Crystals of $\mathbf{3}$ were monoclinic, space group $P 2_{1} / c, a=14.148(4), b=16.491(11), c=21.026(12) \AA, \beta=115.22(3)^{\circ} ; V=4438 \AA^{3}, Z=4 ; 6802$ observed data $(I \geq 3 \sigma(I))$ were refined to $R=0.033$ ($R_{\mathrm{w}}=0.041$). Crystals of 4 were monoclinic, space group $C 2 / c, a=34.139(9), b=14.689(4), c=22.006(7) \AA$, $\beta=96.08(2)^{\circ} ; V=10973 \AA^{3}, Z=8 ; 6127$ observed data were refined to $R=0.043\left(R_{\mathrm{w}}=0.044\right)$.

1. Introduction

We have been interested in the synthesis of cluster complexes containing the C_{2} ligand, starting from the open Ru_{5} cluster $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)$ (CO) ${ }_{13}$ (1; Scheme 1); reactions with CO [2] and $\mathrm{Me}_{2} \mathrm{~S}_{2}$ [3] have given such species. More recently, we communicated an account of a third complex, $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2}\right)(\mu$ $\left.\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{11}(\mathrm{py})_{2}(\mathbf{2})$, obtained from the reaction between 1 and pyridine [4]. From this reaction, we have also isolated two other complexes, the yellow tetranuclear derivative $\mathrm{Ru}_{4}\left\{\mu_{4}-\mathrm{C}_{2} \mathrm{H}\left(\mathrm{PPh}_{2}\right)\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-$

[^0]$\left.\mathrm{NC}_{5} \mathrm{H}_{4}\right)(\mathrm{CO})_{10}(3)$ and the black hexanuclear cluster $\mathrm{Ru}_{6}\left(\mu_{6}-\mathrm{C}_{2} \mathrm{H}\right)\left(\mu_{3}-\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{12}$ (4), both of which have been fully characterized by X-ray crystallographic studies and are described below.

2. Results

The reaction between $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)$ $(\mathrm{CO})_{13}$ (1) and pyridine was carried out in benzene at $90^{\circ} \mathrm{C}$ for 4 h . Preparative thin-layer chromatography was used to separate three major products, which were identified as $\mathrm{Ru}_{4}\left\{\mu_{4}-\mathrm{C}_{2} \mathrm{H}\left(\mathrm{PPh}_{2}\right)\right\}\left(\mu-\mathrm{PPh}_{2}\right)(\mu$ $\left.\mathrm{NC}_{5} \mathrm{H}_{4}\right)(\mathrm{CO})_{10} \quad(3), \quad \mathrm{Ru}_{6}\left(\mu_{6}-\mathrm{C}_{2} \mathrm{H}\right)\left(\mu_{3}-\mathrm{NC}_{5} \mathrm{H}_{4}\right)(\mu-$ $\left.\mathrm{PPh}_{2}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{12}$ (4) and $\mathrm{Ru}_{5}\left(\mu_{5}-\mathrm{C}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}-$ $(\mathrm{CO})_{11}(\mathrm{py})_{2}(2)$ by single-crystal X-ray studies.
2.1. Molecular structure of $R u_{4}\left\{\mu_{4}-C_{2} H\left(P P h_{2}\right)\right\}(\mu-$ $\left.\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{NC}_{5} \mathrm{H}_{4}\right)(\mathrm{CO})_{10}(3)$

A molecule of $\mathbf{3}$ is depicted in Fig. 1 and selected bond parameters are given in Table 1. The molecule consists of an Ru_{4} rhombus with edges between 2.783(1) and 3.018 (1) \AA; the $R u_{4}$ core is bent about the $\mathrm{Ru}(2) \cdots \mathrm{Ru}(4)$ axis with a dihedral angle of $161.93(5)^{\circ}$. The $\mathrm{C}_{2} \mathrm{P}$ unit is attached to all four Ru atoms via $\mathrm{Ru}-\mathrm{C} \sigma$ bonds to $\mathrm{C}(2)[\mathrm{Ru}-\mathrm{C}(2) 2.129-2.217(4) \AA]$, by an η^{2} interaction between $\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{Ru}(4)$ $[\mathrm{Ru}(4)-\mathrm{C}(1) 2.204(4), \mathrm{Ru}(4)-\mathrm{C}(2) 2.064(4) \AA]$ and by $\mathrm{P}(1)$ to $\mathrm{Ru}(1)[\mathrm{Ru}(1)-\mathrm{P}(1) 2.373(2) \AA]$. The $\mathrm{Ru}(2)-$ $\mathrm{Ru}(3)$ edge (the shortest) is also symmetrically bridged by the PPh_{2} group $[\mathrm{Ru}(2)-\mathrm{P}(2) 2.309(2), \mathrm{Ru}(3)-\mathrm{P}(2)$ $2.317(2) \AA]$ and by a 2 -metallated pyridine ligand $[\mathrm{Ru}(2)-\mathrm{C}(102) 2.085(4), \mathrm{Ru}(3)-\mathrm{N}(101) 2.119(4) \AA]$. The latter distances are similar to those found in the two isomers of $\mathrm{Ru}_{5} \mathrm{C}(\mu-\mathrm{H})\left(\mu-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)(\mathrm{CO})_{14} \quad[\mathrm{Ru}-\mathrm{C}$ 2.080(5), 2.131(15); Ru-N 2.169(4), 2.134(12) \AA, for isomers \mathbf{a}, \mathbf{b}, respectively] [5].

Location and refinement of a difference map residue near $C(1)$ suggests that a hydrogen atom is attached to this atom, probably originating from the pyridine molecule. The $\mathrm{C}(1)-\mathrm{C}(2)$ separation is long at $1.459(7)$ \AA and angle $\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ is $102.5(3)^{\circ}$, both more consistent with a coordinated $\mathrm{C}=\mathrm{C}$ double bond than with the $\mathrm{C} \equiv \mathrm{C}$ triple bond originally present in the

TABLE 1. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $R u_{4}\left(\mu_{4}{ }^{-}\right.$ $\mathrm{C}_{2} \mathrm{H}\left(\mathrm{PPh}_{2}\right) \mathrm{Y}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{NC}_{5} \mathrm{H}_{4}\right)(\mathrm{CO})_{10}(3)$

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$3.018(1)$	$\mathrm{Ru}(3)-\mathrm{N}(101)$	$2.119(4)$
$\mathrm{Ru}(1)-\mathrm{Ru}(4)$	$2.857(1)$	$\mathrm{Ru}(1)-\mathrm{C}(2)$	$2.217(4)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.783(1)$	$\mathrm{Ru}(2)-\mathrm{C}(2)$	$2.129(5)$
$\mathrm{Ru}(3)-\mathrm{Ru}(4)$	$2.898(1)$	$\mathrm{Ru}(3)-\mathrm{C}(2)$	$2.164(4)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.373(2)$	$\mathrm{Ru}(4)-\mathrm{C}(2)$	$2.064(4)$
$\mathrm{Ru}(2)-\mathrm{P}(2)$	$2.309(2)$	$\mathrm{Ru}(4)-\mathrm{C}(1)$	$2.204(4)$
$\mathrm{Ru}(3)-\mathrm{P}(2)$	$2.317(2)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.459(7)$
$\mathrm{Ru}(2)-\mathrm{C}(102)$	$2.085(4)$	$\mathrm{C}(1)-\mathrm{P}(1)$	$1.769(4)$
$\mathrm{Ru}-\mathrm{CO}$	Range $1.885-1.940(5), \mathrm{av} .1 .912 \AA$		
$\mathrm{C}-\mathrm{O}$	Range $1.126-1.146(6), \mathrm{av} .1 .136 \AA$		
$\mathrm{P}-\mathrm{C}(\mathrm{Ph})$	Range $1.819-1.832(6), \mathrm{av} .1 .824 \AA$		

$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$88.58(4)$
$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$	$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(4) 87(4)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(4)$	$91.51(4)$

$\mathrm{C}_{2} \mathrm{PPh}_{2}$ ligand in $\mathbf{1}$. The ligand is thus best viewed as a μ_{4}-vinylidene, $\mathrm{C}=\mathrm{CH}\left(\mathrm{PPh}_{2}\right)$, of which $\mathrm{C}(2)$ is strongly bonded to $\mathrm{Ru}(2)$ and $\mathrm{Ru}(3)$ and less so to $\mathrm{Ru}(1)$; the $\mathrm{C}(1)-\mathrm{Ru}(4)$ bond is similar to that found in $\mathrm{Ru}_{5}\left(\mu_{5}{ }^{-}\right.$ $\left.\mathrm{C}_{2} \mathrm{H}\right)(\mu-\mathrm{SPh})\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{11}(5)[6]$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are also consistent with the formulation as a metallated vinylidene. The ${ }^{1} \mathrm{H}$ NMR spectrum contains a resonance at $\delta 4.67$ (d, $J(\mathrm{HP})=5.1 \mathrm{~Hz})$ which is assigned to the $\mathrm{CCH}\left(\mathrm{PPh}_{2}\right)$ proton. The ${ }^{13} \mathrm{C}$ NMR spectrum contains resonances at $\delta 89.79$ and $\delta 231.22(\mathrm{~d}, J(\mathrm{CP})=10.6 \mathrm{~Hz})$ which are

Scheme 1.
assigned to $\mathrm{C}(1)$ and $\mathrm{C}(2)$, respectively. The NMR spectra contain other signals in the aromatic regions, as expected from the other groups present; resonances at $\delta 121.5$ ($\mathrm{C}(105)$), $152.7(\mathrm{C}(106))$ and 180.9 ($\mathrm{C}(102))$ ppm could be assigned to three of the pyridine carbons as indicated. The resonances of the CO groups are found between $\delta 188-206 \mathrm{ppm}$. No $\mathrm{Ru}-\mathrm{H}$ resonance was detected in the ${ }^{1} \mathrm{H}$ NMR spectrum.

The cluster is electron-precise at 64 e ; each Ru atom has an 18e configuration if $\mathrm{C}(2)$ is considered to be σ bonding to $\mathrm{Ru}(2)$ and $\mathrm{Ru}(3)$ and the $\mathrm{C}=\mathrm{C}$ group is π-bonded to $\mathrm{Ru}(4)$. Although $\mathrm{Ru}(4)$ is within bonding distance of $\mathrm{C}(2)$, no formal electron donation is required from this carbon. The CRu_{4} moicty is a common feature of complexes derived from 1 and it is likely that detailed calculations of its electronic structure would reveal a stable electronic configuration for this unit.
2.2. Molecular structure of $R u_{6}\left(\mu_{6} C_{2} H\right)\left(\mu_{3}-N C_{5} H_{4}\right)$ -$\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{12}(4)$

A molecule of 4 is depicted in Fig. 2 and selected bond parameters are given in Table 2. The metal core is best considered as based on a $\mathrm{C}_{2} \mathrm{Ru}_{4}$ octahedron. Of this, $\mathrm{Ru}(3)$ and $\mathrm{Ru}(5)$ are the wing-tip atoms and $\mathrm{Ru}(4)$
and $\mathrm{Ru}(6)$ are the hinge atoms of the Ru_{4} butterfly. The $\mathrm{Ru}(4)-\mathrm{Ru}(5)$ edge is bridged by $\mathrm{Ru}(1)$; this part of the cluster resembles the Ru_{5} cluster present in $\mathbf{1}$. The wing-tip atoms of this "swallow" cluster, Ru(1) and $\mathrm{Ru}(3)$, are bridged by $\mathrm{Ru}(2)$. The $\mathrm{Ru}-\mathrm{Ru}$ separations fall into the range $2.719-2.977(1) \AA$ (av. $2.839 \AA$) with the $R u(3)-R u(6)$ separation the shortest and the $\mathrm{Ru}(1)-\mathrm{Ru}(5)$ vector the longest.

The $\mathrm{C}_{2} \mathrm{H}$ ligand interacts with the four Ru atoms of the $\mathrm{C}_{2} \mathrm{Ru}_{4}$ octahedron in the usual fashion, similar to that found in $\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)(\mathrm{CO})_{12}$ [7]. Atom $\mathrm{C}(1)$ also bridges the $\mathrm{Ru}(1)-\mathrm{Ru}(2)$ vector $[\mathrm{Ru}(1)-\mathrm{C}(1)$ 2.143(8), $\mathrm{Ru}(2)-\mathrm{C}(1) 2.274(8) \AA]$; the $\mathrm{C}(1)-\mathrm{C}(2)$ separation [1.40(1) \AA] is shorter than the corresponding bond in 3. Consequently, this is the first example of a μ_{6}-acetylide ligand. It is formed via C-P bond cleavage in the $\mathrm{C}_{2} \mathrm{PPh}_{2}$ group in 1 along with concomitant addition of an H atom, presumably that from the pyridine ligand. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 were consistent with the solid-state structure. In particular, a resonance at $\delta 6.14$ in the ${ }^{1} \mathrm{H}$ NMR spectrum was assigned to the alkyne proton attached to $\mathrm{C}(2)$, which was not refined in the X-ray determination. A standard 2D COSY spectrum showed this peak was not a phenyl or pyridyl proton due to its lack of

TABLE 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{Ru}_{6}\left(\mu_{6}-\mathrm{C}_{2} \mathrm{H}\right)\left(\mu_{3}-\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mu-\mathrm{CO})(\mathrm{CO})_{12}(4)$

Ru(1)-Ru(2)	2.798(1)	$\mathrm{Ru}(4)-\mathrm{C}(102)$	2.340 (8)
$\mathrm{Ru}(1)-\mathrm{Ru}(4)$	2.835(1)	$\mathrm{Ru}(2)-\mathrm{N}(101)$	$2.124(6)$
$\mathrm{Ru}(1)-\mathrm{Ru}(5)$	2.977(1)	$\mathrm{Ru}(1)-\mathrm{C}(1)$	$2.143(8)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	2.825(1)	$\mathrm{Ru}(2)-\mathrm{C}(1)$	2.274(8)
$\mathrm{Ru}(3)-\mathrm{Ru}(4)$	2.880 (1)	$\mathrm{Ru}(3)-\mathrm{C}(1)$	2.148(9)
$\mathrm{Ru}(3)-\mathrm{Ru}(6)$	2.719(1)	$\mathrm{Ru}(4)-\mathrm{C}(1)$	2.178 (8)
$\mathrm{Ru}(4)-\mathrm{Ru}(5)$	2.774(1)	$\mathrm{Ru}(5)-\mathrm{C}(1)$	2.455(9)
Ru(4)-Ru(6)	2.877(1)	$\mathrm{Ru}(3)-\mathrm{C}(2)$	2.244(8)
Ru(5)-Ru(6)	2.869(1)	$\mathrm{Ru}(5)-\mathrm{C}(2)$	$2.307(9)$
$\mathrm{Ru}(1)-\mathrm{P}(2)$	2.317(2)	$\mathrm{Ru}(6)-\mathrm{C}(2)$	2.217(8)
$\mathrm{Ru}(2)-\mathrm{P}(2)$	2.316(2)	C(1)-C(2)	1.40(1)
$\mathrm{Ru}(5)-\mathrm{P}(1)$	2.254(3)	$\mathrm{Ru}(3)-\mathrm{C}(32)$	1.959(9)
$\mathrm{Ru}(6)-\mathrm{P}(1)$	2.289(3)	$\mathrm{Ru}(6)-\mathrm{C}(32)$	2.45(9)
$\mathrm{Ru}(1)-\mathrm{C}(102)$	$2.129(8)$		
$\mathrm{Ru}-\mathrm{CO}$	Range 1.83(1)-1.928(8), av. $1.886 \AA$		
$\mathrm{C}-\mathrm{O}$	Range 1.11-1.17(1), av. $1.14 \AA$		
$\mathrm{P}-\mathrm{C}(\mathrm{Ph})$	Range 1.806-1.842(9), av. 1.829 A.		
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(5)$	106.39(3)	$\mathrm{Ru}(3)-\mathrm{Ru}(4)-\mathrm{Ru}(6)$	56.36(3)
$R u(1)-R u(2)-R u(3)$	93.56(3)	$R u(5)-R u(4)-R u(6)$	60.99(3)
$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(6)$	126.47(4)	Ru(2)-Ru(1)-Ru(4)	83.43(3)
$R u(1)-R u(5)-R u(6)$	108.92(4)	$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(4)$	82.14(3)
$\mathrm{Ru}(3)-\mathrm{Ru}(6)-\mathrm{Ru}(5)$	93.74(4)	$\mathrm{Ru}(1)-\mathrm{C}(102)-\mathrm{Ru}(4)$	78.6(3)
$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$	91.61(3)	$\mathrm{Ru}(3)-\mathrm{C}(32)-\mathrm{O}(32)$	158.1(9)
$\mathbf{R u}(1)-\mathbf{R u}(4)-\mathbf{R u}(5)$	64.12(3)		
Dihedrals:	$\begin{aligned} & \mathrm{Ru}(1)-\mathrm{Ru} \\ & \mathrm{Ru}(3)-\mathrm{Ru} \\ & \mathrm{Ru}(1)-\mathrm{Ru} \end{aligned}$	$\begin{aligned} & -R u(6) 40.37(4)^{\circ} \\ &)-R u(6) 64.87(4)^{\circ} \\ &)-R u(2)-R u(3)-R u(4) \end{aligned}$	

coupling to any other resonances. No resonances were observed in the metal hydride region. The ${ }^{13} \mathrm{C}$ spectrum contained resonances at $\delta 89.77$ and 319.29 assigned to $C(2)$ and $C(1)$, respectively; three of the five pyridine carbons were found at $\delta 121.4,152.7$ and 180.7 ppm.

Phosphido groups symmetrically bridge the $\mathrm{Ru}(1)-$ $\mathrm{Ru}(2)[\mathrm{Ru}(1)-\mathrm{P}(2) \quad 2.317(2), \mathrm{Ru}(2)-\mathrm{P}(2) \quad 2.316(2) \AA]$ and $\mathrm{Ru}(5)-\mathrm{Ru}(6)$ vectors $[\mathrm{Ru}(5)-\mathrm{P}(1)$ 2.254(2), $\mathrm{Ru}(6)-$ $P(1) 2.289(3) \AA]$. The 2 -metallated pyridine group is attached to $\operatorname{Ru}(2)$ by $\mathrm{N}(101)[\mathrm{Ru}(2)-\mathrm{N}(101) 2.124(6) \AA]$ while $\mathrm{C}(102)$ asymmetrically bridges $\mathrm{Ru}(1)$ and $\mathrm{Ru}(4)$ $[R u(1)-C(102) 2.129, R u(4)-C(102) 2.340(8) \AA]$. The $\mathrm{Ru}(3)-\mathrm{Ru}(6)$ vector is semi-bridged by a CO group $[\mathrm{Ru}(3)-\mathrm{C}(32) 1.959(9), \mathrm{Ru}(6)-\mathrm{C}(32) 2.45(1) \AA ; \mathrm{Ru}(3)-$ $\left.\mathrm{C}(32)-\mathrm{O}(32) 158.1(9)^{\circ}\right]$.

Fig. 1. Plot of molecule of $\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{C}_{2} \mathrm{H}\left(\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\right.$ $\left.\mathrm{NC}_{5} \mathrm{H}_{4}\right)(\mathrm{CO})_{10}$ (3) (a) normal and (b) oblique to the Ru_{4} "plane" ($x^{2}=4.6 \times 10^{5}$; deviations of $R u(1-4) 0.1701,-0.1467,0.1547$, $-0.1749(5) \AA$) showing the atom numbering scheme. Non-hydrogen atoms are shown as 20% thermal ellipsoids; hydrogen atoms have arbitrary radii of $0.1 \AA$.

Fig. 2. Plot of a molecule of $\mathrm{Ru}_{6}\left(\mu_{6}-\mathrm{C}_{2} \mathrm{H}\right)\left(\mu_{3}-\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mu-$ $\mathrm{CO})(\mathrm{CO})_{12}$ (4) (a) normal and (b) oblique to the Ru_{4} "plane" ($\chi^{2}=2.2 \times 10^{5}$; deviations of $\mathrm{Ru}(1-4) \pm 0.28 \AA$), showing the atom numbering scheme. Non-hydrogen atoms are shown as 20% thermal ellipsoids; hydrogen atoms have arbitrary radii of $0.1 \AA$.

The electron count based on a $\left[\mathrm{C}_{2} \mathrm{Ru}_{4}+\mathrm{Ru}_{2}\right]$ polyhedron is 88 e as required, there being nine $\mathrm{Ru} u \mathrm{Ru}$ bonds; the structure contains a novel core geometry for an Ru_{6} cluster.

As described earlier [4], 2 was found to be a spiked butterfly holding a C_{2} ligand attached to all five metal atoms. Two unmetallated pyridine ligands are attached to the spike Ru atom. Structurally it is related to 4 , but with the C_{2} moiety orthogonal to the hinge. In this case, the $\mathrm{C}_{2} \mathrm{Ru}_{4}$ moiety forms a capped trigonal bipyramid. Alternatively, it can be considered to be an
example of a $\mu_{3}-\eta^{2}(\perp)$-acetylide, the normal substituent of the RC_{2} group being replaced by a bridging interaction with the two remaining Ru atoms, as also found in 4.

The reaction between pyridine and 1 resulted in the formation of at least three complexes. In 2, addition of pyridine to one Ru atom resulted in cleavage of the $\mathrm{P}-\mathrm{C}(\mathrm{sp})$ bond of the cluster-bound $\mathrm{C}_{2} \mathrm{PPh}_{2}$ ligand as well as two $\mathrm{Ru}-\mathrm{Ru}$ bonds, to give a complex containing the sought-after C_{2} ligand. In 3 and 4, metallation of the pyridine has occurred; in both, migration of the H atom to C_{β} of the phosphino-acetylide has occurred, probably via the cluster. In 3, this results in formation of a cluster-bound phosphinovinylidene, whereas in 4, the $\mathrm{P}-\mathrm{C}(\mathrm{sp})$ bond cleaves to give the ethynyl ligand. These reactions of the $\mathrm{C}_{2} \mathrm{PPh}_{2}$ ligand are accompanied by cluster rearrangements and loss (for 3) or addition (for 4) of one ruthenium atom. A possible disproportionation of two molecules of a pentanuclear pyridine-containing complex might lead to these complexes, but we have been unable to detect any intermediate of this type.

Several complexes containing the metallated μ $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$ ligand attached to ruthenium clusters have been described [6], most recently in complexes derived from reactions between $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and $\mathrm{Ru}(\mathrm{CO})_{2^{-}}$ (Spy) ${ }_{2}$, which included $\mathrm{Ru}_{5}\left(\mu_{4}-\mathrm{S}\right)_{2}\left(\mu-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}(\mathrm{CO})_{11}$, containing a pentagonal bipyramidal $\mathrm{S}_{2} \mathrm{Ru}_{5}$ core [7]. Transfer of hydride to the metal core is usually observed (except in the latter case, where the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$ ligand is already present in the precursor); as mentioned already, the formation of 3 and 4 requires this hydrogen to migrate further onto the organic ligands.

3. Conclusions

When the open $\mu_{5}-\mathrm{C}_{2} \mathrm{PPh}_{2}$-containing cluster 1 reacts with pyridine complexes 2 [4], 3 and 4 are obtained. Complex 3 contains a μ_{4}-metallated vinylidene ligand and 4 containes a μ_{6}-alkynyl group. In the case of 4 , the $\mu_{6}-\mathrm{C}_{2} \mathrm{H}$ was produced from a $\mathrm{C}-\mathrm{P}$ bond cleavage of the $\mathrm{C}_{2} \mathrm{PPh}_{2}$ ligand in 1. Both 3 and 4 contain 2-metallated pyridine ligands, the latter exhibiting a μ_{3} bonding mode via carbon bridging an $\mathrm{Ru}-\mathrm{Ru}$ bond.

4. Experimental details

General experimental conditions were similar to those described earlier [8]. Complex 1 was prepared by the published method [9]. Pyridine (BDH) was used as received.

4.1. Reaction of 1 with pyridine

A solution of complex $1(300 \mathrm{mg}, 0.237 \mathrm{mmol})$ in benzene ($10 \mathrm{~cm}^{3}$) and pyridine ($1 \mathrm{~cm}^{3}$) was heated in a Carius tube at $90^{\circ} \mathrm{C}$ for 4 h . The solvent was removed and the residue purified by preparative TLC (petroleum ether/acetone $4: 1$). A yellow band ($R_{\mathrm{f}} 0.6$) was recrystallized $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to give 3 ($92 \mathrm{mg}, 33 \%$), m.p. $224-226^{\circ} \mathrm{C}$ (dec.). Anal. Found: C, 40.92; H, 2.28; $\mathrm{N}, 1.16 ; \mathrm{M}^{+}, 1159$ (mass spectrometry). $\mathrm{C}_{41} \mathrm{H}_{25} \mathrm{NO}_{10} \mathrm{P}_{2}{ }^{-}$ $\mathrm{Ru}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ calc.: $\mathrm{C}, 40.59 ; \mathrm{H}, 2.19 ; \mathrm{N}, 1.13 \% ; \mathrm{M}$, 1159. IR (cyclohexane): $\nu(\mathrm{CO}) 2063 \mathrm{~m}, 2037 \mathrm{sh}, 2030 \mathrm{vs}$, $2008 \mathrm{~m}, 2000 \mathrm{~m}, 1999 \mathrm{sh}, 1982 \mathrm{~m}, 1971 \mathrm{~m}, 1958 \mathrm{~m} \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.67(1 \mathrm{H}, \mathrm{d}, J(\mathrm{HP})=5.1 \mathrm{~Hz}$, $\left.\mathrm{CH}\left(\mathrm{PPh}_{2}\right)\right) ; 5.98(2 \mathrm{H}, \mathrm{t}, \mathrm{J}(\mathrm{HH})=5.9 \mathrm{~Hz}, \mathrm{py}+\mathrm{Ph}) ; 6.32$ $(2 \mathrm{H} \mathrm{td}, J(\mathrm{HH})=7.6,1.6 \mathrm{~Hz}, \mathrm{py}+\mathrm{Ph}) ; 6.86(2 \mathrm{H}, \mathrm{d}$, $J(\mathrm{HP})=7.7 \mathrm{~Hz}, \mathrm{py}+\mathrm{Ph}) ; 7.04-7.66(18 \mathrm{H}, \mathrm{m}, \mathrm{py}+\mathrm{Ph})$. ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 89.79$ (s, C(1)); 121.45 (s, C(105)); $125.95-133.41(\mathrm{~m}, \mathrm{Ph}) ; 136.50(\mathrm{~d}, \mathrm{~J}(\mathrm{CP})=42.3 \mathrm{~Hz}, i p s o$ C (PPh)); $137.56(\mathrm{~d}, J(\mathrm{CP})=11.3 \mathrm{~Hz}$, ipso $\mathrm{C}(\mathrm{PPh})$); $139.84(\mathrm{~d}, J(\mathrm{CP})=26.4 \mathrm{~Hz}$, ipso $\mathrm{C}(\mathrm{PPh})$); 142.51 (d, $J(\mathrm{CP})=37.0 \mathrm{~Hz}$, ipso $\mathrm{C}(\mathrm{PPh})) ; 152.74$ (s, C(106)); 180.87 (s, C(102)); 188.73 (s, CO); 194.23 (d, J(CP) $=$ $12.8 \mathrm{~Hz}, \mathrm{CO}$); 194.69 (s, CO); 196.76 (s, CO); 199.23 (d, $J(\mathrm{CP})=9.1 \mathrm{~Hz}, \mathrm{CO}) ; 201.13(\mathrm{~d}, J(\mathrm{CP})=9.8 \mathrm{~Hz}, \mathrm{CO})$; 201.48 (s, CO); 202.34 (s, CO); 205.63 (s, CO); 231.22 $(\mathrm{d}, J(\mathrm{CP})=10.6 \mathrm{~Hz}, \mathrm{C}(2))$. FAB MS: $m / z 1159, \mathrm{M}^{+}$; 1131-879, $[\mathrm{M}-n \mathrm{CO}]^{+}(n=1-10)$. A black band (R_{f} 0.5) was recrystallized $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to give 4 (73 $\mathrm{mg}, 22 \%$), m.p. $267-271^{\circ} \mathrm{C}$ (dec.). Anal. Found: C, 36.50; H, 1.82; N, 1.00; $\mathrm{M}^{+}, 1445$ (mass spectrometry). $\mathrm{C}_{44} \mathrm{H}_{25} \mathrm{NO}_{13} \mathrm{P}_{2} \mathrm{Ru}_{6}$ calc.: C, $36.60 ; \mathrm{H}, 1.74 ; \mathrm{N}, 0.97 \%$; M, 1445. IR (cyclohexane): ν (CO) 2054w, 2026vs, 2004w, 1990s, 1981m, 1965w, 1933w cm ${ }^{-1}$. ${ }^{1}$ H NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.14\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2} \mathrm{H}\right) ; 6.32(1 \mathrm{H}, \mathrm{t}, J(\mathrm{HH})=6.2$ $\mathrm{Hz}, \mathrm{py}) ;$ 6.67-7.57 ($23 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and Py). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 89.77\left(\mathrm{~s}, \mathrm{C}_{2} \mathrm{H}\right)$, 121.44 (s, C(105)); 125.95 133.36 (m, Ph); 136.17-137.50 (m, ipso C (PPh); 139.83 (d $J(\mathrm{CP})=24.9 \mathrm{~Hz}$, ipso $\mathrm{C}(\mathrm{PPh})$); $142.47(\mathrm{~d} . I(\mathrm{CP})=$ 38.5 Hz , ipso $\mathrm{C}(\mathrm{PPh})$); 152.70 (s, C(106)); 180.67 (s, C(102)); 186.76 (s, CO); 194.3 (s, CO); 194.70 (s, CO); 196.76 (s, CO); 199.21 (s, CO); 201.12 (d, $J(\mathrm{CP})=13.6$ Hz, CO); 201.46 (s, CO); $202.32(\mathrm{~d}, J(\mathrm{CP})=9.8 \mathrm{~Hz}$, CO); 205.64 (s, CO); 319.29 (d, J(CP) = $11.3 \mathrm{~Hz}, \mathrm{C}_{\alpha}$). FAB MS: m / z 1445, M^{+}; 1417-1081 [M-nCO] ${ }^{+}$ ($n=1-13$). A brown band ($R_{\mathrm{f}} 0.25$) was recrystallized $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to yield black crystals of $2(32 \mathrm{mg}$, 10%) [4].

5. Crystallography

Unique diffractometer data sets were measured at ca. 295 K within the limit $2 \theta_{\text {max }}=50^{\circ}(2 \theta-\theta$ scan mode; monochromatic Mo $K \alpha$ radiation, $\lambda 0.7107_{3} \AA$); N independent reflections were obtained, N_{o} with

TABLE 3. Non-hydrogen positional and isotropic displacement parameters (3)

Atom	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{Ru}(1)$	0.18782(3)	0.38871(2)	0.10547(2)	0.0315(1)
$\mathrm{Ru}(2)$	0.25917 (3)	0.29898(2)	0.00859(2)	0.0288(1)
Ru(3)	0.38985(3)	0.20647(2)	$0.12305(2)$	0.0292(1)
$\mathrm{Ru}(4)$	$0.28677(3)$	0.26488(2)	$0.20735(2)$	0.0333(1)
C(11)	0.3171(4)	0.4488(3)	$0.1509(3)$	0.048(2)
$\mathrm{O}(11)$	0.3871(3)	0.4889 (2)	0.1829(2)	0.071(2)
C(12)	0.1342 (4)	0.4564(3)	0.1563(3)	0.050(2)
$\mathrm{O}(12)$	0.1024(3)	0.4962(3)	0.1863(2)	0.082(2)
C(13)	0.1360(4)	0.4491(3)	0.0196(3)	0.048(2)
O(13)	0.1055(3)	0.4918(2)	-0.0272(2)	0.072(2)
C(21)	0.1378(3)	0.2361(3)	-0.0511(2)	0.042(2)
$\mathrm{O}(21)$	0.0698(3)	0.2017(3)	-0.0914(2)	0.073(2)
C(22)	0.2353(4)	0.3632(3)	-0.0710(2)	0.049(2)
$\mathrm{O}(22)$	0.2216 (3)	0.4037(3)	-0.1183(2)	0.091(2)
C(31)	$0.5209(4)$	0.1648(3)	0.1852(2)	0.045(2)
O(31)	0.6019(3)	$0.1421(2)$	$0.2236(2)$	0.071(2)
C(32)	$0.3338(4)$	0.1016 (3)	0.1176(2)	0.045(2)
O(32)	0.3065(3)	0.0366(2)	0.1177(2)	0.076(2)
C(41)	0.4185(4)	0.3155(3)	0.2641(2)	0.049(2)
$\mathrm{O}(41)$	0.4973(3)	$0.3430(3)$	0.2990(2)	0.075(2)
C(42)	$0.3295(4)$	0.1633(3)	0.2540(2)	0.056(2)
$\mathrm{O}(42)$	$0.3516(4)$	$0.1022(2)$	0.2816(2)	0.090(2)
C(43)	$0.2168(4)$	0.3024(3)	0.2633(2)	0.049(2)
$\mathrm{O}(43)$	0.1784(3)	0.3241(3)	0.2975(2)	0.080(2)
C(1)	0.1602(3)	0.2179 (3)	0.1103(2)	0.036(2)
C(2)	0.2411(3)	0.2635(2)	0.1001(2)	0.030 2)
$\mathrm{P}(1)$	0.05741(9)	$0.28920(7)$	0.08655(6)	0.0346(4)
C(111)	-0.0486(3)	$0.2677(3)$	0.0001(2)	0.038(2)
C(112)	$-0.0849(4)$	0.3256(3)	-0.0530(2)	0.050(2)
C(113)	$-0.1681(4)$	0.3088(4)	-0.1160(3)	0.062(2)
C(114)	-0.2155(4)	$0.2346(4)$	-0.1275(3)	0.072(3)
C(115)	-0.1814(4)	0.1762(4)	-0.0762(3)	0.068(3)
C(116)	-0.0978(4)	0.1920(3)	-0.0122(3)	0.057(2)
C(121)	-0.0119(3)	0.2778(3)	$0.1417(2)$	0.043(2)
C(122)	-0.0777(4)	0.3396(4)	0.1437(3)	0.069(3)
C(123)	-0.1323(5)	0.3295(5)	0.1839(4)	0.104(4)
C(124)	-0.1234(5)	0.2610(6)	0.2204(4)	0.111(4)
C(125)	-0.0590(5)	0.2004(5)	0.2192(3)	0.094(4)
C(126)	-0.0036(4)	0.2090(4)	$0.1797(3)$	$0.066(3)$
$\mathrm{P}(2)$	0.38238(9)	$0.20583(7)$	0.01082(6)	0.0323(4)
C(211)	0.4947(3)	0.2449(3)	-0.0007(2)	0.036(2)
C(212)	$0.4821(4)$	0.2964(3)	-0.0555(3)	0.052(2)
C(213)	0.5681(4)	0.3240(4)	-0.0644(3)	0.067(3)
C(214)	$0.6650(4)$	0.2998(4)	-0.0186(4)	0.080(3)
C(215)	$0.6788(4)$	0.2469(5)	0.0341(3)	0.088(3)
C(216)	0.5938(4)	0.2205(4)	0.0445(3)	0.067(3)
C(221)	$0.3495(4)$	0.1149(3)	-0.0434(2)	0.041(2)
C(222)	0.4068(4)	$0.0906(3)$	-0.0796(3)	0.059(3)
C(223)	$0.3805(5)$	0.0222(4)	-0.1211(3)	$0.077(3)$
C(224)	0.2952(5)	-0.0244(3)	-0.1268(3)	0.075(3)
C(225)	$0.2400(5)$	-0.0025(3)	-0.0901(3)	0.073(3)
C(226)	0.2651(4)	0.0667(3)	-0.0492(3)	0.054(2)
$\mathrm{N}(101)$	0.4574(3)	$0.3217(2)$	0.1254(2)	0.036(1)
C(102)	0.3952(3)	0.3636(2)	0.0676(2)	0.030(2)
C(103)	$0.4328(4)$	$0.4370(3)$	0.0541(3)	0.045(2)
C(104)	0.5285(4)	0.4656(3)	0.0971(3)	0.054(2)
C(105)	0.5919(4)	0.4213(3)	0.1568(3)	0.054(2)
C(106)	0.5539(3)	0.3500(3)	0.1693(2)	0.043(2)
$\mathrm{Cl}(1)$	-0.0142(2)	0.0066(1)	-0.0820(1)	0.136(2)
$\mathrm{Cl}(2)$	-0.1211(3)	-0.0110(2)	-0.2302(2)	0.257(2)
C(0)	-0.0470(7)	0.0483(6)	-0.1651(4)	0.143(5)

TABLE 4. Non-hydrogen positional and isolropic displacement parameters (4)

Atom	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{Ru}(1)$	0.60024(2)	0.53121(5)	0.60969 (3)	0.0325(4)
$\mathrm{Ru}(2)$	$0.67921(2)$	$0.51699(5)$	0.58740 (3)	$0.0360(4)$
Ru(3)	0.68553(2)	0.70389 (5)	0.55985(3)	0.0387(4)
$\mathrm{Ru}(4)$	$0.60132(2)$	0.68752(5)	$0.53432(3)$	0.0354(4)
$\mathrm{Ru}(5)$	$0.58965(2)$	$0.71949(5)$	0.65533(3)	$0.0397(4)$
$\mathrm{Ru}(6)$	$0.63978(2)$	0.84056 (5)	0.59662(4)	$0.0436(4)$
C(11)	$0.5973(3)$	0.5231(6)	$0.6965(4)$	0.044(5)
O(11)	0.5941(2)	0.5101(5)	0.7466 (3)	$0.076(5)$
C(12)	$0.5472(3)$	$0.4906(6)$	0.5967(4)	0.051(6)
O(12)	$0.5156(2)$	0.4671(6)	0.5878(3)	0.089(6)
C(21)	0.7228(3)	0.4583(6)	$0.5574(4)$	0.053(6)
$\mathrm{O}(21)$	0.7496(2)	$0.4230(5)$	0.5433(3)	0.086(5)
C(22)	$0.71000(3)$	0.5264(6)	$0.6636(4)$	0.056(6)
O (22)	0.7297(2)	$0.5300(5)$	$0.7077(3)$	0.088(5)
C(31)	0.7003(3)	0.6563(7)	0.4873(4)	$0.056(6)$
O(31)	0.7102(2)	$0.6302(5)$	$0.4415(3)$	$0.077(5)$
C(32)	0.6898(3)	0.8258(6)	0.5251(4)	$0.058(6)$
O(32)	$0.7010(2)$	$0.8816(5)$	$0.4964(4)$	$0.091(6)$
C(33)	0.7383(3)	0.6989(7)	0.6001(4)	0.063(7)
O(33)	$0.7681(2)$	$0.6937(6)$	$0.6252(3)$	$0.101(6)$
C(41)	$0.5465(3)$	$0.7100(6)$	0.5212(4)	0.059(6)
$\mathrm{O}(41)$	0.5139(2)	$0.7245(5)$	0.5104(4)	$0.092(6)$
C(42)	0.6090 (3)	$0.7602(7)$	0.4686(4)	0.059(6)
$\mathrm{O}(42)$	$0.6130(2)$	0.8025(5)	$0.4250(3)$	0.093(6)
C(51)	0.5934(3)	$0.7143(6)$	0.7390 (4)	0.058(6)
O(51)	0.5939(2)	$0.7108(5)$	0.7921(3)	$0.084(5)$
C(52)	$0.5362(3)$	0.6921(6)	0.6549(4)	0.056(6)
O(52)	0.5039 (2)	0.6748(5)	0.6557(4)	0.089(6)
C(61)	0.6780 (3)	$0.9172(7)$	0.6381(5)	0.070(7)
O(61)	0.7011(3)	$0.9637(6)$	$0.6620(4)$	0.132(8)
C(62)	$0.6230(3)$	$0.9332(7)$	0.5383(4)	0.067(7)
O(62)	0.6122(3)	0.9864(5)	0.5028(3)	0.107(6)
C(1)	0.6425 (2)	$0.6392(5)$	0.6098(4)	$0.040(5)$
C(2)	0.6563(2)	$0.7126(5)$	0.6464(3)	$0.039(5)$
P(1)	$0.59168(8)$	0.8728(2)	0.6584(1)	0.052(2)
C(111)	0.5503(3)	$0.9444(6)$	$0.6263(5)$	$0.061(6)$
C(112)	0.5579(3)	1.0350(7)	0.6127(5)	0.077(8)
C(113)	0.5288(4)	1.0904(8)	0.5859(6)	0.10(1)
C(114)	0.4923(4)	1.0575(8)	$0.5728(6)$	0.10 (1)
C(115)	$0.4835(3)$	$0.9690(8)$	0.5842(7)	0.11(1)
C(116)	0.5136(3)	$0.9115(7)$	0.6108(6)	0.081(8)
C(121)	0.6061(3)	$0.9250(6)$	0.7335(4)	0.061(7)
C(122)	0.5820(4)	$0.9825(7)$	0.7614(5)	0.079(8)
C(123)	0.5948(4)	1.0181(7)	$0.8192(5)$	0.097(9)
C(124)	0.6308(5)	0.9960(8)	0.8469(5)	0.11(1)
C(125)	0.6545(4)	$0.9399(7)$	0.8202(5)	0.085(8)
C(126)	0.6429(3)	$0.9034(7)$	0.7636(5)	0.076(8)
$\mathrm{P}(2)$	$0.63753(7)$	0.3995(2)	0.6087(1)	0.039(1)
C(211)	0.6271(3)	0.3191(5)	0.5457(4)	$0.041(5)$
C(212)	0.5896(3)	0.3071(6)	0.5168(4)	0.059(6)
C(213)	0.5832(3)	0.2498(7)	$0.4667(5)$	0.071(7)
C(214)	$0.6139(3)$	$0.2044(7)$	$0.4454(5)$	0.074(7)
C(215)	0.6506 (3)	0.2141(7)	0.4743(5)	0.083(8)
C(216)	0.6575(3)	$0.2715(7)$	0.5252(5)	$0.065(7)$
C(221)	0.6457(3)	$0.3265(6)$	0.6749(4)	0.048(6)
C(222)	0.6602(3)	$0.3628(6)$	0.7311(4)	0.061(7)
C(223)	0.6651(3)	0.3094(7)	0.7832(5)	0.077(8)
C(224)	0.6563(4)	0.2195(8)	0.7781(5)	0.099(9)
C(225)	0.6435(4)	0.1819(8)	0.7234(5)	0.11(1)
C(226)	0.6374(3)	0.2344(7)	0.6716(5)	0.081(8)
N(101)	0.6426 (2)	0.5110(4)	0.5032(3)	0.033(4)
C(102)	$0.6049(2)$	0.5316(5)	0.5140(4)	0.038(5)

TABLE 4 (continued)

Atom	x	y	z	$U_{\mathrm{cq}}\left(\AA^{2}\right)$
$\mathrm{C}(103)$	$0.5752(3)$	$0.5336(6)$	$0.4649(4)$	$0.049(6)$
$\mathrm{C}(104)$	$0.5841(3)$	$0.5132(7)$	$0.4068(4)$	$0.068(7)$
$\mathrm{C}(105)$	$0.6221(3)$	$0.4866(7)$	$0.3972(4)$	$0.059(6)$
$\mathrm{C}(106)$	$0.6500(2)$	$0.4857(6)$	$0.4483(4)$	$0.043(5)$
$\mathrm{C}(01)$	$0.7370(4)$	$0.665(1)$	$0.8319(6)$	$0.12(1)$
$\mathrm{Cl}(11)$	$0.6876(1)$	$0.6498(4)$	$0.8187(2)$	$0.184(5)$
$\mathrm{Cl}(12)$	$0.7523(1)$	$0.6535(4)$	$0.9064(2)$	$0.186(5)$
$\mathrm{Cl}(13))^{\mathrm{a}}$	$0.7488(2)$	$0.7668(4)$	$0.8016(3)$	$0.220(6)$
$\mathrm{C}(02)^{\mathrm{a}}$	$0.4982(-)$	$0.3103(-)$	$0.7352(-)$	$0.17(3)$
$\mathrm{Cl}(21)^{\mathrm{a}}$	$0.4687(-)$	$0.2832(-)$	$0.6769(-)$	$0.25(1)$
$\mathrm{Cl}(22)^{\mathrm{a}}$	$0.4716(-)$	$0.3257(-)$	$0.7905(-)$	$0.44(3)$
$\mathrm{Cl}(23)^{\mathrm{a}}$	$0.5243(-)$	$0.2281(-)$	$0.7548(-)$	$0.35(2)$

${ }^{2}$ Population parameter $=0.25$, isotropic refinement.
$I>3 \sigma(I)$ being considered "observed" and used in the full matrix least squares refinement after gaussian absorption correction. Anisotropic thermal parameters were refined for the non-hydrogen atoms; (x, y, z,

TABLE 5. Crystal data and refinement details for 3 and 4

Compound	3	4
Formula	$\begin{aligned} & \mathrm{C}_{41} \mathrm{H}_{25} \mathrm{NO}_{10} \mathrm{P}_{2} \mathrm{Ru}_{4} \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{44} \mathrm{H}_{24} \mathrm{NO}_{13} \mathrm{P}_{2} \mathrm{Ru}_{6} \\ & 1.25 \mathrm{CHCl}_{3} \end{aligned}$
MW	1251.7	1592.3
Crystal system	Monoclinic	Monoclinic
Space group	$P 2_{1} / c$	C2/c
$a(\AA)$	14.148(4)	34.139(9)
$b(\AA)$	16.491(11)	14.689(4)
$c(\AA)$	$21.026(12)$	$22.006(7)$
$\left.\beta{ }^{(}\right)$	115.22(3)	96.08(2)
$U\left(\AA^{3}\right)$	4438.0	10973
Z	4	8
$D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.87	1.93
$F(000)$	2424	6126
Crystal size (mm)	$0.40 \times 0.31 \times 0.50$	$0.15 \times 0.40 \times 0.48$
$A^{*}(\min , \max)$	1.43, 1.50	1.43, 1.79
$\mu\left(\mathrm{cm}^{-1}\right)$	14.1	17.3
N	7802	9509
N_{0}	6802	6127
R	0.033	0.043
$R_{\text {w }}$	0.041	0.044

$\left.U_{\text {iso }}\right)_{\mathrm{H}}$ were included constrained at estimated values. Conventional residuals $\mathrm{R}, \mathrm{R}^{\prime}$ on $|F|$ are quoted, statistical weights derivative of $\sigma^{2}(I)=\sigma^{2}\left(I_{\text {diff }}\right)+$ $0.0004 \sigma^{4}\left(I_{\text {diff }}\right)$ being used. Computation used the xtal 2.6 program system [10] implemented by Hall; neutral atom complex scattering factors were employed. Pertinent results are given in the figures and tables.

5.1. Abnormal features / variations in procedure

The core hydride of $\mathbf{3}$ was located as a difference map residue and refined in ($x, y, z, U_{\text {iso }}$); that of 4 was observed in a final difference map. Assignment of core-bonded pyridine C, N atoms in both structures was made on the basis of refinement behaviour and associated geometries 4 decomposed by $\sim 10 \%$ during data collection and data were scaled accordingly.

Acknowledgements

We thank the Australian Research Council for financial support and Johnson Matthey Technology Centre for a generous loan of $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$.

References

1 Part LXXXV: C. J. Adams, M. I. Bruce, B. W. Skelton and A. H. White, J. Cluster Sci, in press
2 M. I. Bruce, M. R. Snow, E. R. T. Tiekink and M. L. Williams, J. Chem. Soc., Chem. Commun., (1986) 701.
3 C. J. Adams, M. I. Bruce, B. W. Skelton and A. H. White, J. Chem. Soc., Chem. Commun., (1992) 26.
4 C. J. Adams, M. I. Bruce, B. W. Skelton and A. H. White, J. Organomet. Chem., 423 (1992) 97.
5 G. Conole, M. McPartlin, H. R. Powell, T. Dutton, B. F. G. Johnson and J. Lewis, J. Organomet. Chem., 379 (1989) C1.
6 M. I. Bruce, M. P. Cifuentes and M. G. Humphrey, Polyhedron, 10 (1991) 277.
7 K. I. Hardcastle, B. R. Cockerton, A. J. Deeming and M. Karim, J. Chem. Soc., Dalton Trans., (1992) 1607.

8 M. I. Bruce, M. J. Liddell, B. W. Skelton and A. H. White, Organometallics, 10 (1991) 3282.
9 M. I. Bruce, M. L. Williams, J. M. Patrick and A. H. White, J. Chem. Soc., Dalton Trans., (1985) 1229.
10 S. R. Hall and J. M. Stewart (eds.), xtal Users' Manual, Version 2.6, Universities of Western Australia and Maryland, 1989.

[^0]: Correspondence to: Professor M.I. Bruce.

 * For Part LXXXV, see ref. 1.

